const m = require('makerjs') const u = require('./utils') const a = require('./assert') const o = require('./operation') const Point = require('./point') const prep = require('./prepare') const anchor_lib = require('./anchor') const filter = require('./filter').parse const binding = (base, w, h, point, units) => { let bind = a.trbl(point.meta.bind || 0, `${point.meta.name}.bind`)(units) // if it's a mirrored key, we swap the left and right bind values if (point.meta.mirrored) { bind = [bind[0], bind[3], bind[2], bind[1]] } const bt = h/2 + Math.max(bind[0], 0) const br = w/2 + Math.max(bind[1], 0) const bd = -h/2 - Math.max(bind[2], 0) const bl = -w/2 - Math.max(bind[3], 0) if (bind[0] || bind[1]) base = u.union(base, u.rect(br, bt)) if (bind[1] || bind[2]) base = u.union(base, u.rect(br, -bd, [0, bd])) if (bind[2] || bind[3]) base = u.union(base, u.rect(-bl, -bd, [bl, bd])) if (bind[3] || bind[0]) base = u.union(base, u.rect(-bl, bt, [bl, 0])) return base } const rectangle = (config, name, points, units) => { // prepare params a.unexpected(config, `${name}`, ['size', 'corner', 'bevel']) const size = a.wh(params.size, `${export_name}.size`)(units) const rec_units = prep.extend({ sx: size[0], sy: size[1] }, units) const corner = a.sane(params.corner || 0, `${export_name}.corner`, 'number')(rec_units) const bevel = a.sane(params.bevel || 0, `${export_name}.bevel`, 'number')(rec_units) // return shape function return (point, bound, mirror) => { const error = (dim, val) => `Rectangle for "${name}" isn't ${dim} enough for its corner and bevel (${val} - 2 * ${corner} - 2 * ${bevel} <= 0)!` const [w, h] = size const mod = 2 * (corner + bevel) const cw = w - mod a.assert(cw >= 0, error('wide', w)) const ch = h - mod a.assert(ch >= 0, error('tall', h)) let rect = new m.models.Rectangle(cw, ch) if (bevel) { rect = u.poly([ [-bevel, 0], [-bevel, ch], [0, ch + bevel], [cw, ch + bevel], [cw + bevel, ch], [cw + bevel, 0], [cw, -bevel], [0, -bevel] ]) } if (corner > 0) rect = m.model.outline(rect, corner, 0) rect = m.model.moveRelative(res, [corner + bevel, corner + bevel]) let normal = u.deepcopy(rect) if (bound) normal = binding(normal, w, h, point, rec_units) normal = point.position(normal) let mirrored if (mirror) { mirrored_name = anchor_lib.mirror(point.name) } } } // Actual layout let left = {models: {}} let right = {models: {}} if (['left', 'right', 'middle', 'both'].includes(side)) { for (const [pname, p] of Object.entries(points)) { // filter by tags, if necessary if (tags.length) { const source = p.meta.tags || {} const point_tags = Object.keys(source).filter(t => !!source[t]) const relevant = point_tags.some(pt => tags.includes(pt)) if (!relevant) continue } let from_x = -size[0] / 2, to_x = size[0] / 2 let from_y = -size[1] / 2, to_y = size[1] / 2 // the original position let rect = rectangle(to_x - from_x, to_y - from_y, corner, bevel, `${export_name}.size`) rect = m.model.moveRelative(rect, [from_x, from_y]) // extra binding "material", if necessary if (bound) { let bind = a.trbl(p.meta.bind || 0, `${pname}.bind`)(relative_units) // if it's a mirrored key, we swap the left and right bind values if (p.meta.mirrored) { bind = [bind[0], bind[3], bind[2], bind[1]] } const bt = to_y + Math.max(bind[0], 0) const br = to_x + Math.max(bind[1], 0) const bd = from_y - Math.max(bind[2], 0) const bl = from_x - Math.max(bind[3], 0) if (bind[0] || bind[1]) rect = u.union(rect, u.rect(br, bt)) if (bind[1] || bind[2]) rect = u.union(rect, u.rect(br, -bd, [0, bd])) if (bind[2] || bind[3]) rect = u.union(rect, u.rect(-bl, -bd, [bl, bd])) if (bind[3] || bind[0]) rect = u.union(rect, u.rect(-bl, bt, [bl, 0])) } // positioning and unioning the resulting shape rect = p.position(rect) if (p.meta.mirrored) { right = u.union(right, rect) } else { left = u.union(left, rect) } } } if (side == 'left') return left if (side == 'right') return right // allow opting out of gluing, when // A) there are no glue definitions, or // B) glue is explicitly set to false const glue_opt_out = (!Object.keys(parsed_glue).length || params.glue === false) let glue = {models: {}} if (bound && ['middle', 'both', 'glue'].includes(side) && !glue_opt_out) { const default_glue_name = Object.keys(parsed_glue)[0] const computed_glue_name = a.sane(params.glue || default_glue_name, `${export_name}.glue`, 'string')() const glue_def = parsed_glue[computed_glue_name] a.assert(glue_def, `Field "${export_name}.glue" does not name a valid glue!`) const get_line = (anchor) => { if (a.type(anchor)(relative_units) == 'number') { return u.line([anchor, -1000], [anchor, 1000]) } // if it wasn't a number, then it's a (possibly relative) anchor const from = anchor(relative_units).clone() const to = from.clone().shift([from.meta.mirrored ? -1 : 1, 0]) return u.line(from.p, to.p) } const tll = get_line(glue_def.top.left) const trl = get_line(glue_def.top.right) const tip = m.path.converge(tll, trl) if (!tip) { throw new Error(`Top lines don't intersect in glue "${computed_glue_name}"!`) } const tlp = u.eq(tll.origin, tip) ? tll.end : tll.origin const trp = u.eq(trl.origin, tip) ? trl.end : trl.origin const bll = get_line(glue_def.bottom.left) const brl = get_line(glue_def.bottom.right) const bip = m.path.converge(bll, brl) if (!bip) { throw new Error(`Bottom lines don't intersect in glue "${computed_glue_name}"!`) } const blp = u.eq(bll.origin, bip) ? bll.end : bll.origin const brp = u.eq(brl.origin, bip) ? brl.end : brl.origin const left_waypoints = [] const right_waypoints = [] for (const w of glue_def.waypoints) { const percent = w.percent / 100 const center_x = tip[0] + percent * (bip[0] - tip[0]) const center_y = tip[1] + percent * (bip[1] - tip[1]) const left_x = center_x - w.width[0] const right_x = center_x + w.width[1] left_waypoints.push([left_x, center_y]) right_waypoints.unshift([right_x, center_y]) } let waypoints const is_split = a.type(glue_def.top.right)(relative_units) == 'number' if (is_split) { waypoints = [tip, tlp] .concat(left_waypoints) .concat([blp, bip]) } else { waypoints = [trp, tip, tlp] .concat(left_waypoints) .concat([blp, bip, brp]) .concat(right_waypoints) } glue = u.poly(waypoints) } if (side == 'glue') return glue if (side == 'middle') { let middle = u.subtract(glue, left) middle = u.subtract(middle, right) return middle } let both = u.union(u.deepcopy(left), glue) both = u.union(both, u.deepcopy(right)) return both } } const whats = { rectangle, } exports.parse = (config = {}, points = {}, units = {}) => { // output outlines will be collected here const outlines = {} // the config must be an actual object so that the exports have names config = a.sane(config, 'outlines', 'object')() for (let [outline_name, parts] of Object.entries(config)) { // placeholder for the current outline outlines[outline_name] = {models: {}} // each export can consist of multiple parts // either sub-objects or arrays are fine... if (a.type(parts)() == 'array') { parts = {...parts} } parts = a.sane(parts, `outlines.${key}`, 'object')() for (let [part_name, part] of Object.entries(parts)) { const name = `outlines.${key}.${part_name}` // string part-shortcuts are expanded first if (a.type(part)() == 'string') { part = o.operation(part, {outline: Object.keys(outlines)}) } // process keys that are common to all part declarations const what = a.in(part.what || 'outline', `${name}.what`, ['rectangle', 'circle', 'polygon', 'outline']) // where is delayed until we have all, potentially what-dependent units const where = units => filter(part.where, `${name}.where`, points, units) const operation = u[a.in(part.operation || 'add', `${name}.operation`, ['add', 'subtract', 'intersect', 'stack'])] const bound = a.sane(part.bound === undefined ? true : part.bound, `${name}.bound`, 'boolean')() const mirror = a.sane(part.mirror || false, `${name}.mirror`, 'boolean')() // which are then removed, so ops can check their own unexpected keys delete part.what delete part.where delete part.operation delete part.bound delete part.mirror // a prototype "shape" maker (and its units) are computed const [shape, shape_units] = whats[what](part, name, points, units) // and then repeated for all where positions for (const w of where(shape_units)) { const [normal, mirrored] = shape(w, bound, mirror) outlines[outline_name] = operation(outlines[outline_name], normal) // and even their mirrors, if applicable if (mirror) { outlines[outline_name] = operation(outlines[outline_name], mirrored) } } } m.model.originate(outlines[outline_name]) m.model.simplify(outlines[outline_name]) } return outlines } // let arg // let anchor // const anchor_def = part.anchor || {} // switch (part.type) { // case 'keys': // arg = layout_fn(part, name, expected) // break // case 'rectangle': // a.unexpected(part, name, expected.concat(['anchor', 'size', 'corner', 'bevel', 'mirror'])) // const size = a.wh(part.size, `${name}.size`)(units) // const rec_units = prep.extend({ // sx: size[0], // sy: size[1] // }, units) // anchor = anchor_lib.parse(anchor_def, `${name}.anchor`, points)(rec_units) // const corner = a.sane(part.corner || 0, `${name}.corner`, 'number')(rec_units) // const bevel = a.sane(part.bevel || 0, `${name}.bevel`, 'number')(rec_units) // const rect_mirror = a.sane(part.mirror || false, `${name}.mirror`, 'boolean')() // const rect = m.model.moveRelative(rectangle(size[0], size[1], corner, bevel, name), [-size[0]/2, -size[1]/2]) // arg = anchor.position(u.deepcopy(rect)) // if (rect_mirror) { // const mirror_anchor = u.deepcopy(anchor_def) // a.assert(mirror_anchor.ref, `Field "${name}.anchor.ref" must be speficied if mirroring is required!`) // anchor = anchor_lib.parse(mirror_anchor, `${name}.anchor --> mirror`, points, undefined, undefined, true)(rec_units) // arg = u.union(arg, anchor.position(u.deepcopy(rect))) // } // break // case 'circle': // a.unexpected(part, name, expected.concat(['anchor', 'radius', 'mirror'])) // const radius = a.sane(part.radius, `${name}.radius`, 'number')(units) // const circle_units = prep.extend({ // r: radius // }, units) // anchor = anchor_lib.parse(anchor_def, `${name}.anchor`, points)(circle_units) // const circle_mirror = a.sane(part.mirror || false, `${name}.mirror`, 'boolean')() // arg = u.circle(anchor.p, radius) // if (circle_mirror) { // const mirror_anchor = u.deepcopy(anchor_def) // a.assert(mirror_anchor.ref, `Field "${name}.anchor.ref" must be speficied if mirroring is required!`) // anchor = anchor_lib.parse(mirror_anchor, `${name}.anchor --> mirror`, points, undefined, undefined, true)(circle_units) // arg = u.union(arg, u.circle(anchor.p, radius)) // } // break // case 'polygon': // a.unexpected(part, name, expected.concat(['points', 'mirror'])) // const poly_points = a.sane(part.points, `${name}.points`, 'array')() // const poly_mirror = a.sane(part.mirror || false, `${name.mirror}`, 'boolean')() // const parsed_points = [] // const mirror_points = [] // let poly_mirror_x = 0 // let last_anchor = new Point() // let poly_index = 0 // for (const poly_point of poly_points) { // const poly_name = `${name}.points[${++poly_index}]` // if (poly_index == 1 && poly_mirror) { // a.assert(poly_point.ref, `Field "${poly_name}.ref" must be speficied if mirroring is required!`) // const mirrored_ref = anchor_lib.mirror(poly_point.ref, poly_mirror) // a.assert(points[poly_point.ref], `Field "${poly_name}.ref" does not name an existing point!`) // a.assert(points[mirrored_ref], `The mirror of field "${poly_name}.ref" ("${mirrored_ref}") does not name an existing point!`) // poly_mirror_x = (points[poly_point.ref].x + points[mirrored_ref].x) / 2 // } // last_anchor = anchor_lib.parse(poly_point, poly_name, points, true, last_anchor)(units) // parsed_points.push(last_anchor.p) // mirror_points.push(last_anchor.clone().mirror(poly_mirror_x).p) // } // arg = u.poly(parsed_points) // if (poly_mirror) { // arg = u.union(arg, u.poly(mirror_points)) // } // break // case 'outline': // a.unexpected(part, name, expected.concat(['name', 'fillet'])) // a.assert(outlines[part.name], `Field "${name}.name" does not name an existing outline!`) // const fillet = a.sane(part.fillet || 0, `${name}.fillet`, 'number')(units) // arg = u.deepcopy(outlines[part.name]) // if (fillet) { // for (const [index, chain] of m.model.findChains(arg).entries()) { // arg.models[`fillet_${index}`] = m.chain.fillet(chain, fillet) // } // } // break // default: // throw new Error(`Field "${name}.type" (${part.type}) does not name a valid outline part type!`) // } // result = op(result, arg) // } // m.model.originate(result) // m.model.simplify(result) // outlines[key] = result // } // return outlines // }