docker api

This commit is contained in:
Stefan Schwarz 2020-12-28 02:22:33 +01:00
parent b6a86b5401
commit 4f41e275d6
836 changed files with 262259 additions and 4 deletions

View file

@ -0,0 +1,77 @@
// Copyright 2020 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
package protoreflect
import (
"google.golang.org/protobuf/internal/pragma"
)
// The following types are used by the fast-path Message.ProtoMethods method.
//
// To avoid polluting the public protoreflect API with types used only by
// low-level implementations, the canonical definitions of these types are
// in the runtime/protoiface package. The definitions here and in protoiface
// must be kept in sync.
type (
methods = struct {
pragma.NoUnkeyedLiterals
Flags supportFlags
Size func(sizeInput) sizeOutput
Marshal func(marshalInput) (marshalOutput, error)
Unmarshal func(unmarshalInput) (unmarshalOutput, error)
Merge func(mergeInput) mergeOutput
CheckInitialized func(checkInitializedInput) (checkInitializedOutput, error)
}
supportFlags = uint64
sizeInput = struct {
pragma.NoUnkeyedLiterals
Message Message
Flags uint8
}
sizeOutput = struct {
pragma.NoUnkeyedLiterals
Size int
}
marshalInput = struct {
pragma.NoUnkeyedLiterals
Message Message
Buf []byte
Flags uint8
}
marshalOutput = struct {
pragma.NoUnkeyedLiterals
Buf []byte
}
unmarshalInput = struct {
pragma.NoUnkeyedLiterals
Message Message
Buf []byte
Flags uint8
Resolver interface {
FindExtensionByName(field FullName) (ExtensionType, error)
FindExtensionByNumber(message FullName, field FieldNumber) (ExtensionType, error)
}
}
unmarshalOutput = struct {
pragma.NoUnkeyedLiterals
Flags uint8
}
mergeInput = struct {
pragma.NoUnkeyedLiterals
Source Message
Destination Message
}
mergeOutput = struct {
pragma.NoUnkeyedLiterals
Flags uint8
}
checkInitializedInput = struct {
pragma.NoUnkeyedLiterals
Message Message
}
checkInitializedOutput = struct {
pragma.NoUnkeyedLiterals
}
)

View file

@ -0,0 +1,504 @@
// Copyright 2018 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
// Package protoreflect provides interfaces to dynamically manipulate messages.
//
// This package includes type descriptors which describe the structure of types
// defined in proto source files and value interfaces which provide the
// ability to examine and manipulate the contents of messages.
//
//
// Protocol Buffer Descriptors
//
// Protobuf descriptors (e.g., EnumDescriptor or MessageDescriptor)
// are immutable objects that represent protobuf type information.
// They are wrappers around the messages declared in descriptor.proto.
// Protobuf descriptors alone lack any information regarding Go types.
//
// Enums and messages generated by this module implement Enum and ProtoMessage,
// where the Descriptor and ProtoReflect.Descriptor accessors respectively
// return the protobuf descriptor for the values.
//
// The protobuf descriptor interfaces are not meant to be implemented by
// user code since they might need to be extended in the future to support
// additions to the protobuf language.
// The "google.golang.org/protobuf/reflect/protodesc" package converts between
// google.protobuf.DescriptorProto messages and protobuf descriptors.
//
//
// Go Type Descriptors
//
// A type descriptor (e.g., EnumType or MessageType) is a constructor for
// a concrete Go type that represents the associated protobuf descriptor.
// There is commonly a one-to-one relationship between protobuf descriptors and
// Go type descriptors, but it can potentially be a one-to-many relationship.
//
// Enums and messages generated by this module implement Enum and ProtoMessage,
// where the Type and ProtoReflect.Type accessors respectively
// return the protobuf descriptor for the values.
//
// The "google.golang.org/protobuf/types/dynamicpb" package can be used to
// create Go type descriptors from protobuf descriptors.
//
//
// Value Interfaces
//
// The Enum and Message interfaces provide a reflective view over an
// enum or message instance. For enums, it provides the ability to retrieve
// the enum value number for any concrete enum type. For messages, it provides
// the ability to access or manipulate fields of the message.
//
// To convert a proto.Message to a protoreflect.Message, use the
// former's ProtoReflect method. Since the ProtoReflect method is new to the
// v2 message interface, it may not be present on older message implementations.
// The "github.com/golang/protobuf/proto".MessageReflect function can be used
// to obtain a reflective view on older messages.
//
//
// Relationships
//
// The following diagrams demonstrate the relationships between
// various types declared in this package.
//
//
// ┌───────────────────────────────────┐
// V │
// ┌────────────── New(n) ─────────────┐ │
// │ │ │
// │ ┌──── Descriptor() ──┐ │ ┌── Number() ──┐ │
// │ │ V V │ V │
// ╔════════════╗ ╔════════════════╗ ╔════════╗ ╔════════════╗
// ║ EnumType ║ ║ EnumDescriptor ║ ║ Enum ║ ║ EnumNumber ║
// ╚════════════╝ ╚════════════════╝ ╚════════╝ ╚════════════╝
// Λ Λ │ │
// │ └─── Descriptor() ──┘ │
// │ │
// └────────────────── Type() ───────┘
//
// • An EnumType describes a concrete Go enum type.
// It has an EnumDescriptor and can construct an Enum instance.
//
// • An EnumDescriptor describes an abstract protobuf enum type.
//
// • An Enum is a concrete enum instance. Generated enums implement Enum.
//
//
// ┌──────────────── New() ─────────────────┐
// │ │
// │ ┌─── Descriptor() ─────┐ │ ┌── Interface() ───┐
// │ │ V V │ V
// ╔═════════════╗ ╔═══════════════════╗ ╔═════════╗ ╔══════════════╗
// ║ MessageType ║ ║ MessageDescriptor ║ ║ Message ║ ║ ProtoMessage ║
// ╚═════════════╝ ╚═══════════════════╝ ╚═════════╝ ╚══════════════╝
// Λ Λ │ │ Λ │
// │ └──── Descriptor() ────┘ │ └─ ProtoReflect() ─┘
// │ │
// └─────────────────── Type() ─────────┘
//
// • A MessageType describes a concrete Go message type.
// It has a MessageDescriptor and can construct a Message instance.
//
// • A MessageDescriptor describes an abstract protobuf message type.
//
// • A Message is a concrete message instance. Generated messages implement
// ProtoMessage, which can convert to/from a Message.
//
//
// ┌── TypeDescriptor() ──┐ ┌───── Descriptor() ─────┐
// │ V │ V
// ╔═══════════════╗ ╔═════════════════════════╗ ╔═════════════════════╗
// ║ ExtensionType ║ ║ ExtensionTypeDescriptor ║ ║ ExtensionDescriptor ║
// ╚═══════════════╝ ╚═════════════════════════╝ ╚═════════════════════╝
// Λ │ │ Λ │ Λ
// └─────── Type() ───────┘ │ └─── may implement ────┘ │
// │ │
// └────── implements ────────┘
//
// • An ExtensionType describes a concrete Go implementation of an extension.
// It has an ExtensionTypeDescriptor and can convert to/from
// abstract Values and Go values.
//
// • An ExtensionTypeDescriptor is an ExtensionDescriptor
// which also has an ExtensionType.
//
// • An ExtensionDescriptor describes an abstract protobuf extension field and
// may not always be an ExtensionTypeDescriptor.
package protoreflect
import (
"fmt"
"strings"
"google.golang.org/protobuf/encoding/protowire"
"google.golang.org/protobuf/internal/pragma"
)
type doNotImplement pragma.DoNotImplement
// ProtoMessage is the top-level interface that all proto messages implement.
// This is declared in the protoreflect package to avoid a cyclic dependency;
// use the proto.Message type instead, which aliases this type.
type ProtoMessage interface{ ProtoReflect() Message }
// Syntax is the language version of the proto file.
type Syntax syntax
type syntax int8 // keep exact type opaque as the int type may change
const (
Proto2 Syntax = 2
Proto3 Syntax = 3
)
// IsValid reports whether the syntax is valid.
func (s Syntax) IsValid() bool {
switch s {
case Proto2, Proto3:
return true
default:
return false
}
}
// String returns s as a proto source identifier (e.g., "proto2").
func (s Syntax) String() string {
switch s {
case Proto2:
return "proto2"
case Proto3:
return "proto3"
default:
return fmt.Sprintf("<unknown:%d>", s)
}
}
// GoString returns s as a Go source identifier (e.g., "Proto2").
func (s Syntax) GoString() string {
switch s {
case Proto2:
return "Proto2"
case Proto3:
return "Proto3"
default:
return fmt.Sprintf("Syntax(%d)", s)
}
}
// Cardinality determines whether a field is optional, required, or repeated.
type Cardinality cardinality
type cardinality int8 // keep exact type opaque as the int type may change
// Constants as defined by the google.protobuf.Cardinality enumeration.
const (
Optional Cardinality = 1 // appears zero or one times
Required Cardinality = 2 // appears exactly one time; invalid with Proto3
Repeated Cardinality = 3 // appears zero or more times
)
// IsValid reports whether the cardinality is valid.
func (c Cardinality) IsValid() bool {
switch c {
case Optional, Required, Repeated:
return true
default:
return false
}
}
// String returns c as a proto source identifier (e.g., "optional").
func (c Cardinality) String() string {
switch c {
case Optional:
return "optional"
case Required:
return "required"
case Repeated:
return "repeated"
default:
return fmt.Sprintf("<unknown:%d>", c)
}
}
// GoString returns c as a Go source identifier (e.g., "Optional").
func (c Cardinality) GoString() string {
switch c {
case Optional:
return "Optional"
case Required:
return "Required"
case Repeated:
return "Repeated"
default:
return fmt.Sprintf("Cardinality(%d)", c)
}
}
// Kind indicates the basic proto kind of a field.
type Kind kind
type kind int8 // keep exact type opaque as the int type may change
// Constants as defined by the google.protobuf.Field.Kind enumeration.
const (
BoolKind Kind = 8
EnumKind Kind = 14
Int32Kind Kind = 5
Sint32Kind Kind = 17
Uint32Kind Kind = 13
Int64Kind Kind = 3
Sint64Kind Kind = 18
Uint64Kind Kind = 4
Sfixed32Kind Kind = 15
Fixed32Kind Kind = 7
FloatKind Kind = 2
Sfixed64Kind Kind = 16
Fixed64Kind Kind = 6
DoubleKind Kind = 1
StringKind Kind = 9
BytesKind Kind = 12
MessageKind Kind = 11
GroupKind Kind = 10
)
// IsValid reports whether the kind is valid.
func (k Kind) IsValid() bool {
switch k {
case BoolKind, EnumKind,
Int32Kind, Sint32Kind, Uint32Kind,
Int64Kind, Sint64Kind, Uint64Kind,
Sfixed32Kind, Fixed32Kind, FloatKind,
Sfixed64Kind, Fixed64Kind, DoubleKind,
StringKind, BytesKind, MessageKind, GroupKind:
return true
default:
return false
}
}
// String returns k as a proto source identifier (e.g., "bool").
func (k Kind) String() string {
switch k {
case BoolKind:
return "bool"
case EnumKind:
return "enum"
case Int32Kind:
return "int32"
case Sint32Kind:
return "sint32"
case Uint32Kind:
return "uint32"
case Int64Kind:
return "int64"
case Sint64Kind:
return "sint64"
case Uint64Kind:
return "uint64"
case Sfixed32Kind:
return "sfixed32"
case Fixed32Kind:
return "fixed32"
case FloatKind:
return "float"
case Sfixed64Kind:
return "sfixed64"
case Fixed64Kind:
return "fixed64"
case DoubleKind:
return "double"
case StringKind:
return "string"
case BytesKind:
return "bytes"
case MessageKind:
return "message"
case GroupKind:
return "group"
default:
return fmt.Sprintf("<unknown:%d>", k)
}
}
// GoString returns k as a Go source identifier (e.g., "BoolKind").
func (k Kind) GoString() string {
switch k {
case BoolKind:
return "BoolKind"
case EnumKind:
return "EnumKind"
case Int32Kind:
return "Int32Kind"
case Sint32Kind:
return "Sint32Kind"
case Uint32Kind:
return "Uint32Kind"
case Int64Kind:
return "Int64Kind"
case Sint64Kind:
return "Sint64Kind"
case Uint64Kind:
return "Uint64Kind"
case Sfixed32Kind:
return "Sfixed32Kind"
case Fixed32Kind:
return "Fixed32Kind"
case FloatKind:
return "FloatKind"
case Sfixed64Kind:
return "Sfixed64Kind"
case Fixed64Kind:
return "Fixed64Kind"
case DoubleKind:
return "DoubleKind"
case StringKind:
return "StringKind"
case BytesKind:
return "BytesKind"
case MessageKind:
return "MessageKind"
case GroupKind:
return "GroupKind"
default:
return fmt.Sprintf("Kind(%d)", k)
}
}
// FieldNumber is the field number in a message.
type FieldNumber = protowire.Number
// FieldNumbers represent a list of field numbers.
type FieldNumbers interface {
// Len reports the number of fields in the list.
Len() int
// Get returns the ith field number. It panics if out of bounds.
Get(i int) FieldNumber
// Has reports whether n is within the list of fields.
Has(n FieldNumber) bool
doNotImplement
}
// FieldRanges represent a list of field number ranges.
type FieldRanges interface {
// Len reports the number of ranges in the list.
Len() int
// Get returns the ith range. It panics if out of bounds.
Get(i int) [2]FieldNumber // start inclusive; end exclusive
// Has reports whether n is within any of the ranges.
Has(n FieldNumber) bool
doNotImplement
}
// EnumNumber is the numeric value for an enum.
type EnumNumber int32
// EnumRanges represent a list of enum number ranges.
type EnumRanges interface {
// Len reports the number of ranges in the list.
Len() int
// Get returns the ith range. It panics if out of bounds.
Get(i int) [2]EnumNumber // start inclusive; end inclusive
// Has reports whether n is within any of the ranges.
Has(n EnumNumber) bool
doNotImplement
}
// Name is the short name for a proto declaration. This is not the name
// as used in Go source code, which might not be identical to the proto name.
type Name string // e.g., "Kind"
// IsValid reports whether s is a syntactically valid name.
// An empty name is invalid.
func (s Name) IsValid() bool {
return consumeIdent(string(s)) == len(s)
}
// Names represent a list of names.
type Names interface {
// Len reports the number of names in the list.
Len() int
// Get returns the ith name. It panics if out of bounds.
Get(i int) Name
// Has reports whether s matches any names in the list.
Has(s Name) bool
doNotImplement
}
// FullName is a qualified name that uniquely identifies a proto declaration.
// A qualified name is the concatenation of the proto package along with the
// fully-declared name (i.e., name of parent preceding the name of the child),
// with a '.' delimiter placed between each Name.
//
// This should not have any leading or trailing dots.
type FullName string // e.g., "google.protobuf.Field.Kind"
// IsValid reports whether s is a syntactically valid full name.
// An empty full name is invalid.
func (s FullName) IsValid() bool {
i := consumeIdent(string(s))
if i < 0 {
return false
}
for len(s) > i {
if s[i] != '.' {
return false
}
i++
n := consumeIdent(string(s[i:]))
if n < 0 {
return false
}
i += n
}
return true
}
func consumeIdent(s string) (i int) {
if len(s) == 0 || !isLetter(s[i]) {
return -1
}
i++
for len(s) > i && isLetterDigit(s[i]) {
i++
}
return i
}
func isLetter(c byte) bool {
return c == '_' || ('a' <= c && c <= 'z') || ('A' <= c && c <= 'Z')
}
func isLetterDigit(c byte) bool {
return isLetter(c) || ('0' <= c && c <= '9')
}
// Name returns the short name, which is the last identifier segment.
// A single segment FullName is the Name itself.
func (n FullName) Name() Name {
if i := strings.LastIndexByte(string(n), '.'); i >= 0 {
return Name(n[i+1:])
}
return Name(n)
}
// Parent returns the full name with the trailing identifier removed.
// A single segment FullName has no parent.
func (n FullName) Parent() FullName {
if i := strings.LastIndexByte(string(n), '.'); i >= 0 {
return n[:i]
}
return ""
}
// Append returns the qualified name appended with the provided short name.
//
// Invariant: n == n.Parent().Append(n.Name()) // assuming n is valid
func (n FullName) Append(s Name) FullName {
if n == "" {
return FullName(s)
}
return n + "." + FullName(s)
}

View file

@ -0,0 +1,52 @@
// Copyright 2019 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
package protoreflect
// SourceLocations is a list of source locations.
type SourceLocations interface {
// Len reports the number of source locations in the proto file.
Len() int
// Get returns the ith SourceLocation. It panics if out of bounds.
Get(int) SourceLocation
doNotImplement
// TODO: Add ByPath and ByDescriptor helper methods.
}
// SourceLocation describes a source location and
// corresponds with the google.protobuf.SourceCodeInfo.Location message.
type SourceLocation struct {
// Path is the path to the declaration from the root file descriptor.
// The contents of this slice must not be mutated.
Path SourcePath
// StartLine and StartColumn are the zero-indexed starting location
// in the source file for the declaration.
StartLine, StartColumn int
// EndLine and EndColumn are the zero-indexed ending location
// in the source file for the declaration.
// In the descriptor.proto, the end line may be omitted if it is identical
// to the start line. Here, it is always populated.
EndLine, EndColumn int
// LeadingDetachedComments are the leading detached comments
// for the declaration. The contents of this slice must not be mutated.
LeadingDetachedComments []string
// LeadingComments is the leading attached comment for the declaration.
LeadingComments string
// TrailingComments is the trailing attached comment for the declaration.
TrailingComments string
}
// SourcePath identifies part of a file descriptor for a source location.
// The SourcePath is a sequence of either field numbers or indexes into
// a repeated field that form a path starting from the root file descriptor.
//
// See google.protobuf.SourceCodeInfo.Location.path.
type SourcePath []int32
// TODO: Add SourcePath.String method to pretty-print the path. For example:
// ".message_type[6].nested_type[15].field[3]"

View file

@ -0,0 +1,631 @@
// Copyright 2018 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
package protoreflect
// Descriptor provides a set of accessors that are common to every descriptor.
// Each descriptor type wraps the equivalent google.protobuf.XXXDescriptorProto,
// but provides efficient lookup and immutability.
//
// Each descriptor is comparable. Equality implies that the two types are
// exactly identical. However, it is possible for the same semantically
// identical proto type to be represented by multiple type descriptors.
//
// For example, suppose we have t1 and t2 which are both MessageDescriptors.
// If t1 == t2, then the types are definitely equal and all accessors return
// the same information. However, if t1 != t2, then it is still possible that
// they still represent the same proto type (e.g., t1.FullName == t2.FullName).
// This can occur if a descriptor type is created dynamically, or multiple
// versions of the same proto type are accidentally linked into the Go binary.
type Descriptor interface {
// ParentFile returns the parent file descriptor that this descriptor
// is declared within. The parent file for the file descriptor is itself.
//
// Support for this functionality is optional and may return nil.
ParentFile() FileDescriptor
// Parent returns the parent containing this descriptor declaration.
// The following shows the mapping from child type to possible parent types:
//
// ╔═════════════════════╤═══════════════════════════════════╗
// ║ Child type │ Possible parent types ║
// ╠═════════════════════╪═══════════════════════════════════╣
// ║ FileDescriptor │ nil ║
// ║ MessageDescriptor │ FileDescriptor, MessageDescriptor ║
// ║ FieldDescriptor │ FileDescriptor, MessageDescriptor ║
// ║ OneofDescriptor │ MessageDescriptor ║
// ║ EnumDescriptor │ FileDescriptor, MessageDescriptor ║
// ║ EnumValueDescriptor │ EnumDescriptor ║
// ║ ServiceDescriptor │ FileDescriptor ║
// ║ MethodDescriptor │ ServiceDescriptor ║
// ╚═════════════════════╧═══════════════════════════════════╝
//
// Support for this functionality is optional and may return nil.
Parent() Descriptor
// Index returns the index of this descriptor within its parent.
// It returns 0 if the descriptor does not have a parent or if the parent
// is unknown.
Index() int
// Syntax is the protobuf syntax.
Syntax() Syntax // e.g., Proto2 or Proto3
// Name is the short name of the declaration (i.e., FullName.Name).
Name() Name // e.g., "Any"
// FullName is the fully-qualified name of the declaration.
//
// The FullName is a concatenation of the full name of the type that this
// type is declared within and the declaration name. For example,
// field "foo_field" in message "proto.package.MyMessage" is
// uniquely identified as "proto.package.MyMessage.foo_field".
// Enum values are an exception to the rule (see EnumValueDescriptor).
FullName() FullName // e.g., "google.protobuf.Any"
// IsPlaceholder reports whether type information is missing since a
// dependency is not resolved, in which case only name information is known.
//
// Placeholder types may only be returned by the following accessors
// as a result of unresolved dependencies or weak imports:
//
// ╔═══════════════════════════════════╤═════════════════════╗
// ║ Accessor │ Descriptor ║
// ╠═══════════════════════════════════╪═════════════════════╣
// ║ FileImports.FileDescriptor │ FileDescriptor ║
// ║ FieldDescriptor.Enum │ EnumDescriptor ║
// ║ FieldDescriptor.Message │ MessageDescriptor ║
// ║ FieldDescriptor.DefaultEnumValue │ EnumValueDescriptor ║
// ║ FieldDescriptor.ContainingMessage │ MessageDescriptor ║
// ║ MethodDescriptor.Input │ MessageDescriptor ║
// ║ MethodDescriptor.Output │ MessageDescriptor ║
// ╚═══════════════════════════════════╧═════════════════════╝
//
// If true, only Name and FullName are valid.
// For FileDescriptor, the Path is also valid.
IsPlaceholder() bool
// Options returns the descriptor options. The caller must not modify
// the returned value.
//
// To avoid a dependency cycle, this function returns a proto.Message value.
// The proto message type returned for each descriptor type is as follows:
// ╔═════════════════════╤══════════════════════════════════════════╗
// ║ Go type │ Protobuf message type ║
// ╠═════════════════════╪══════════════════════════════════════════╣
// ║ FileDescriptor │ google.protobuf.FileOptions ║
// ║ EnumDescriptor │ google.protobuf.EnumOptions ║
// ║ EnumValueDescriptor │ google.protobuf.EnumValueOptions ║
// ║ MessageDescriptor │ google.protobuf.MessageOptions ║
// ║ FieldDescriptor │ google.protobuf.FieldOptions ║
// ║ OneofDescriptor │ google.protobuf.OneofOptions ║
// ║ ServiceDescriptor │ google.protobuf.ServiceOptions ║
// ║ MethodDescriptor │ google.protobuf.MethodOptions ║
// ╚═════════════════════╧══════════════════════════════════════════╝
//
// This method returns a typed nil-pointer if no options are present.
// The caller must import the descriptorpb package to use this.
Options() ProtoMessage
doNotImplement
}
// FileDescriptor describes the types in a complete proto file and
// corresponds with the google.protobuf.FileDescriptorProto message.
//
// Top-level declarations:
// EnumDescriptor, MessageDescriptor, FieldDescriptor, and/or ServiceDescriptor.
type FileDescriptor interface {
Descriptor // Descriptor.FullName is identical to Package
// Path returns the file name, relative to the source tree root.
Path() string // e.g., "path/to/file.proto"
// Package returns the protobuf package namespace.
Package() FullName // e.g., "google.protobuf"
// Imports is a list of imported proto files.
Imports() FileImports
// Enums is a list of the top-level enum declarations.
Enums() EnumDescriptors
// Messages is a list of the top-level message declarations.
Messages() MessageDescriptors
// Extensions is a list of the top-level extension declarations.
Extensions() ExtensionDescriptors
// Services is a list of the top-level service declarations.
Services() ServiceDescriptors
// SourceLocations is a list of source locations.
SourceLocations() SourceLocations
isFileDescriptor
}
type isFileDescriptor interface{ ProtoType(FileDescriptor) }
// FileImports is a list of file imports.
type FileImports interface {
// Len reports the number of files imported by this proto file.
Len() int
// Get returns the ith FileImport. It panics if out of bounds.
Get(i int) FileImport
doNotImplement
}
// FileImport is the declaration for a proto file import.
type FileImport struct {
// FileDescriptor is the file type for the given import.
// It is a placeholder descriptor if IsWeak is set or if a dependency has
// not been regenerated to implement the new reflection APIs.
FileDescriptor
// IsPublic reports whether this is a public import, which causes this file
// to alias declarations within the imported file. The intended use cases
// for this feature is the ability to move proto files without breaking
// existing dependencies.
//
// The current file and the imported file must be within proto package.
IsPublic bool
// IsWeak reports whether this is a weak import, which does not impose
// a direct dependency on the target file.
//
// Weak imports are a legacy proto1 feature. Equivalent behavior is
// achieved using proto2 extension fields or proto3 Any messages.
IsWeak bool
}
// MessageDescriptor describes a message and
// corresponds with the google.protobuf.DescriptorProto message.
//
// Nested declarations:
// FieldDescriptor, OneofDescriptor, FieldDescriptor, EnumDescriptor,
// and/or MessageDescriptor.
type MessageDescriptor interface {
Descriptor
// IsMapEntry indicates that this is an auto-generated message type to
// represent the entry type for a map field.
//
// Map entry messages have only two fields:
// • a "key" field with a field number of 1
// • a "value" field with a field number of 2
// The key and value types are determined by these two fields.
//
// If IsMapEntry is true, it implies that FieldDescriptor.IsMap is true
// for some field with this message type.
IsMapEntry() bool
// Fields is a list of nested field declarations.
Fields() FieldDescriptors
// Oneofs is a list of nested oneof declarations.
Oneofs() OneofDescriptors
// ReservedNames is a list of reserved field names.
ReservedNames() Names
// ReservedRanges is a list of reserved ranges of field numbers.
ReservedRanges() FieldRanges
// RequiredNumbers is a list of required field numbers.
// In Proto3, it is always an empty list.
RequiredNumbers() FieldNumbers
// ExtensionRanges is the field ranges used for extension fields.
// In Proto3, it is always an empty ranges.
ExtensionRanges() FieldRanges
// ExtensionRangeOptions returns the ith extension range options.
//
// To avoid a dependency cycle, this method returns a proto.Message value,
// which always contains a google.protobuf.ExtensionRangeOptions message.
// This method returns a typed nil-pointer if no options are present.
// The caller must import the descriptorpb package to use this.
ExtensionRangeOptions(i int) ProtoMessage
// Enums is a list of nested enum declarations.
Enums() EnumDescriptors
// Messages is a list of nested message declarations.
Messages() MessageDescriptors
// Extensions is a list of nested extension declarations.
Extensions() ExtensionDescriptors
isMessageDescriptor
}
type isMessageDescriptor interface{ ProtoType(MessageDescriptor) }
// MessageType encapsulates a MessageDescriptor with a concrete Go implementation.
type MessageType interface {
// New returns a newly allocated empty message.
New() Message
// Zero returns an empty, read-only message.
Zero() Message
// Descriptor returns the message descriptor.
//
// Invariant: t.Descriptor() == t.New().Descriptor()
Descriptor() MessageDescriptor
}
// MessageDescriptors is a list of message declarations.
type MessageDescriptors interface {
// Len reports the number of messages.
Len() int
// Get returns the ith MessageDescriptor. It panics if out of bounds.
Get(i int) MessageDescriptor
// ByName returns the MessageDescriptor for a message named s.
// It returns nil if not found.
ByName(s Name) MessageDescriptor
doNotImplement
}
// FieldDescriptor describes a field within a message and
// corresponds with the google.protobuf.FieldDescriptorProto message.
//
// It is used for both normal fields defined within the parent message
// (e.g., MessageDescriptor.Fields) and fields that extend some remote message
// (e.g., FileDescriptor.Extensions or MessageDescriptor.Extensions).
type FieldDescriptor interface {
Descriptor
// Number reports the unique number for this field.
Number() FieldNumber
// Cardinality reports the cardinality for this field.
Cardinality() Cardinality
// Kind reports the basic kind for this field.
Kind() Kind
// HasJSONName reports whether this field has an explicitly set JSON name.
HasJSONName() bool
// JSONName reports the name used for JSON serialization.
// It is usually the camel-cased form of the field name.
JSONName() string
// HasPresence reports whether the field distinguishes between unpopulated
// and default values.
HasPresence() bool
// IsExtension reports whether this is an extension field. If false,
// then Parent and ContainingMessage refer to the same message.
// Otherwise, ContainingMessage and Parent likely differ.
IsExtension() bool
// HasOptionalKeyword reports whether the "optional" keyword was explicitly
// specified in the source .proto file.
HasOptionalKeyword() bool
// IsWeak reports whether this is a weak field, which does not impose a
// direct dependency on the target type.
// If true, then Message returns a placeholder type.
IsWeak() bool
// IsPacked reports whether repeated primitive numeric kinds should be
// serialized using a packed encoding.
// If true, then it implies Cardinality is Repeated.
IsPacked() bool
// IsList reports whether this field represents a list,
// where the value type for the associated field is a List.
// It is equivalent to checking whether Cardinality is Repeated and
// that IsMap reports false.
IsList() bool
// IsMap reports whether this field represents a map,
// where the value type for the associated field is a Map.
// It is equivalent to checking whether Cardinality is Repeated,
// that the Kind is MessageKind, and that Message.IsMapEntry reports true.
IsMap() bool
// MapKey returns the field descriptor for the key in the map entry.
// It returns nil if IsMap reports false.
MapKey() FieldDescriptor
// MapValue returns the field descriptor for the value in the map entry.
// It returns nil if IsMap reports false.
MapValue() FieldDescriptor
// HasDefault reports whether this field has a default value.
HasDefault() bool
// Default returns the default value for scalar fields.
// For proto2, it is the default value as specified in the proto file,
// or the zero value if unspecified.
// For proto3, it is always the zero value of the scalar.
// The Value type is determined by the Kind.
Default() Value
// DefaultEnumValue returns the enum value descriptor for the default value
// of an enum field, and is nil for any other kind of field.
DefaultEnumValue() EnumValueDescriptor
// ContainingOneof is the containing oneof that this field belongs to,
// and is nil if this field is not part of a oneof.
ContainingOneof() OneofDescriptor
// ContainingMessage is the containing message that this field belongs to.
// For extension fields, this may not necessarily be the parent message
// that the field is declared within.
ContainingMessage() MessageDescriptor
// Enum is the enum descriptor if Kind is EnumKind.
// It returns nil for any other Kind.
Enum() EnumDescriptor
// Message is the message descriptor if Kind is
// MessageKind or GroupKind. It returns nil for any other Kind.
Message() MessageDescriptor
isFieldDescriptor
}
type isFieldDescriptor interface{ ProtoType(FieldDescriptor) }
// FieldDescriptors is a list of field declarations.
type FieldDescriptors interface {
// Len reports the number of fields.
Len() int
// Get returns the ith FieldDescriptor. It panics if out of bounds.
Get(i int) FieldDescriptor
// ByName returns the FieldDescriptor for a field named s.
// It returns nil if not found.
ByName(s Name) FieldDescriptor
// ByJSONName returns the FieldDescriptor for a field with s as the JSON name.
// It returns nil if not found.
ByJSONName(s string) FieldDescriptor
// ByNumber returns the FieldDescriptor for a field numbered n.
// It returns nil if not found.
ByNumber(n FieldNumber) FieldDescriptor
doNotImplement
}
// OneofDescriptor describes a oneof field set within a given message and
// corresponds with the google.protobuf.OneofDescriptorProto message.
type OneofDescriptor interface {
Descriptor
// IsSynthetic reports whether this is a synthetic oneof created to support
// proto3 optional semantics. If true, Fields contains exactly one field
// with HasOptionalKeyword specified.
IsSynthetic() bool
// Fields is a list of fields belonging to this oneof.
Fields() FieldDescriptors
isOneofDescriptor
}
type isOneofDescriptor interface{ ProtoType(OneofDescriptor) }
// OneofDescriptors is a list of oneof declarations.
type OneofDescriptors interface {
// Len reports the number of oneof fields.
Len() int
// Get returns the ith OneofDescriptor. It panics if out of bounds.
Get(i int) OneofDescriptor
// ByName returns the OneofDescriptor for a oneof named s.
// It returns nil if not found.
ByName(s Name) OneofDescriptor
doNotImplement
}
// ExtensionDescriptor is an alias of FieldDescriptor for documentation.
type ExtensionDescriptor = FieldDescriptor
// ExtensionTypeDescriptor is an ExtensionDescriptor with an associated ExtensionType.
type ExtensionTypeDescriptor interface {
ExtensionDescriptor
// Type returns the associated ExtensionType.
Type() ExtensionType
// Descriptor returns the plain ExtensionDescriptor without the
// associated ExtensionType.
Descriptor() ExtensionDescriptor
}
// ExtensionDescriptors is a list of field declarations.
type ExtensionDescriptors interface {
// Len reports the number of fields.
Len() int
// Get returns the ith ExtensionDescriptor. It panics if out of bounds.
Get(i int) ExtensionDescriptor
// ByName returns the ExtensionDescriptor for a field named s.
// It returns nil if not found.
ByName(s Name) ExtensionDescriptor
doNotImplement
}
// ExtensionType encapsulates an ExtensionDescriptor with a concrete
// Go implementation. The nested field descriptor must be for a extension field.
//
// While a normal field is a member of the parent message that it is declared
// within (see Descriptor.Parent), an extension field is a member of some other
// target message (see ExtensionDescriptor.Extendee) and may have no
// relationship with the parent. However, the full name of an extension field is
// relative to the parent that it is declared within.
//
// For example:
// syntax = "proto2";
// package example;
// message FooMessage {
// extensions 100 to max;
// }
// message BarMessage {
// extends FooMessage { optional BarMessage bar_field = 100; }
// }
//
// Field "bar_field" is an extension of FooMessage, but its full name is
// "example.BarMessage.bar_field" instead of "example.FooMessage.bar_field".
type ExtensionType interface {
// New returns a new value for the field.
// For scalars, this returns the default value in native Go form.
New() Value
// Zero returns a new value for the field.
// For scalars, this returns the default value in native Go form.
// For composite types, this returns an empty, read-only message, list, or map.
Zero() Value
// TypeDescriptor returns the extension type descriptor.
TypeDescriptor() ExtensionTypeDescriptor
// ValueOf wraps the input and returns it as a Value.
// ValueOf panics if the input value is invalid or not the appropriate type.
//
// ValueOf is more extensive than protoreflect.ValueOf for a given field's
// value as it has more type information available.
ValueOf(interface{}) Value
// InterfaceOf completely unwraps the Value to the underlying Go type.
// InterfaceOf panics if the input is nil or does not represent the
// appropriate underlying Go type. For composite types, it panics if the
// value is not mutable.
//
// InterfaceOf is able to unwrap the Value further than Value.Interface
// as it has more type information available.
InterfaceOf(Value) interface{}
// IsValidValue reports whether the Value is valid to assign to the field.
IsValidValue(Value) bool
// IsValidInterface reports whether the input is valid to assign to the field.
IsValidInterface(interface{}) bool
}
// EnumDescriptor describes an enum and
// corresponds with the google.protobuf.EnumDescriptorProto message.
//
// Nested declarations:
// EnumValueDescriptor.
type EnumDescriptor interface {
Descriptor
// Values is a list of nested enum value declarations.
Values() EnumValueDescriptors
// ReservedNames is a list of reserved enum names.
ReservedNames() Names
// ReservedRanges is a list of reserved ranges of enum numbers.
ReservedRanges() EnumRanges
isEnumDescriptor
}
type isEnumDescriptor interface{ ProtoType(EnumDescriptor) }
// EnumType encapsulates an EnumDescriptor with a concrete Go implementation.
type EnumType interface {
// New returns an instance of this enum type with its value set to n.
New(n EnumNumber) Enum
// Descriptor returns the enum descriptor.
//
// Invariant: t.Descriptor() == t.New(0).Descriptor()
Descriptor() EnumDescriptor
}
// EnumDescriptors is a list of enum declarations.
type EnumDescriptors interface {
// Len reports the number of enum types.
Len() int
// Get returns the ith EnumDescriptor. It panics if out of bounds.
Get(i int) EnumDescriptor
// ByName returns the EnumDescriptor for an enum named s.
// It returns nil if not found.
ByName(s Name) EnumDescriptor
doNotImplement
}
// EnumValueDescriptor describes an enum value and
// corresponds with the google.protobuf.EnumValueDescriptorProto message.
//
// All other proto declarations are in the namespace of the parent.
// However, enum values do not follow this rule and are within the namespace
// of the parent's parent (i.e., they are a sibling of the containing enum).
// Thus, a value named "FOO_VALUE" declared within an enum uniquely identified
// as "proto.package.MyEnum" has a full name of "proto.package.FOO_VALUE".
type EnumValueDescriptor interface {
Descriptor
// Number returns the enum value as an integer.
Number() EnumNumber
isEnumValueDescriptor
}
type isEnumValueDescriptor interface{ ProtoType(EnumValueDescriptor) }
// EnumValueDescriptors is a list of enum value declarations.
type EnumValueDescriptors interface {
// Len reports the number of enum values.
Len() int
// Get returns the ith EnumValueDescriptor. It panics if out of bounds.
Get(i int) EnumValueDescriptor
// ByName returns the EnumValueDescriptor for the enum value named s.
// It returns nil if not found.
ByName(s Name) EnumValueDescriptor
// ByNumber returns the EnumValueDescriptor for the enum value numbered n.
// If multiple have the same number, the first one defined is returned
// It returns nil if not found.
ByNumber(n EnumNumber) EnumValueDescriptor
doNotImplement
}
// ServiceDescriptor describes a service and
// corresponds with the google.protobuf.ServiceDescriptorProto message.
//
// Nested declarations: MethodDescriptor.
type ServiceDescriptor interface {
Descriptor
// Methods is a list of nested message declarations.
Methods() MethodDescriptors
isServiceDescriptor
}
type isServiceDescriptor interface{ ProtoType(ServiceDescriptor) }
// ServiceDescriptors is a list of service declarations.
type ServiceDescriptors interface {
// Len reports the number of services.
Len() int
// Get returns the ith ServiceDescriptor. It panics if out of bounds.
Get(i int) ServiceDescriptor
// ByName returns the ServiceDescriptor for a service named s.
// It returns nil if not found.
ByName(s Name) ServiceDescriptor
doNotImplement
}
// MethodDescriptor describes a method and
// corresponds with the google.protobuf.MethodDescriptorProto message.
type MethodDescriptor interface {
Descriptor
// Input is the input message descriptor.
Input() MessageDescriptor
// Output is the output message descriptor.
Output() MessageDescriptor
// IsStreamingClient reports whether the client streams multiple messages.
IsStreamingClient() bool
// IsStreamingServer reports whether the server streams multiple messages.
IsStreamingServer() bool
isMethodDescriptor
}
type isMethodDescriptor interface{ ProtoType(MethodDescriptor) }
// MethodDescriptors is a list of method declarations.
type MethodDescriptors interface {
// Len reports the number of methods.
Len() int
// Get returns the ith MethodDescriptor. It panics if out of bounds.
Get(i int) MethodDescriptor
// ByName returns the MethodDescriptor for a service method named s.
// It returns nil if not found.
ByName(s Name) MethodDescriptor
doNotImplement
}

View file

@ -0,0 +1,285 @@
// Copyright 2018 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
package protoreflect
import "google.golang.org/protobuf/encoding/protowire"
// Enum is a reflection interface for a concrete enum value,
// which provides type information and a getter for the enum number.
// Enum does not provide a mutable API since enums are commonly backed by
// Go constants, which are not addressable.
type Enum interface {
// Descriptor returns enum descriptor, which contains only the protobuf
// type information for the enum.
Descriptor() EnumDescriptor
// Type returns the enum type, which encapsulates both Go and protobuf
// type information. If the Go type information is not needed,
// it is recommended that the enum descriptor be used instead.
Type() EnumType
// Number returns the enum value as an integer.
Number() EnumNumber
}
// Message is a reflective interface for a concrete message value,
// encapsulating both type and value information for the message.
//
// Accessor/mutators for individual fields are keyed by FieldDescriptor.
// For non-extension fields, the descriptor must exactly match the
// field known by the parent message.
// For extension fields, the descriptor must implement ExtensionTypeDescriptor,
// extend the parent message (i.e., have the same message FullName), and
// be within the parent's extension range.
//
// Each field Value can be a scalar or a composite type (Message, List, or Map).
// See Value for the Go types associated with a FieldDescriptor.
// Providing a Value that is invalid or of an incorrect type panics.
type Message interface {
// Descriptor returns message descriptor, which contains only the protobuf
// type information for the message.
Descriptor() MessageDescriptor
// Type returns the message type, which encapsulates both Go and protobuf
// type information. If the Go type information is not needed,
// it is recommended that the message descriptor be used instead.
Type() MessageType
// New returns a newly allocated and mutable empty message.
New() Message
// Interface unwraps the message reflection interface and
// returns the underlying ProtoMessage interface.
Interface() ProtoMessage
// Range iterates over every populated field in an undefined order,
// calling f for each field descriptor and value encountered.
// Range returns immediately if f returns false.
// While iterating, mutating operations may only be performed
// on the current field descriptor.
Range(f func(FieldDescriptor, Value) bool)
// Has reports whether a field is populated.
//
// Some fields have the property of nullability where it is possible to
// distinguish between the default value of a field and whether the field
// was explicitly populated with the default value. Singular message fields,
// member fields of a oneof, and proto2 scalar fields are nullable. Such
// fields are populated only if explicitly set.
//
// In other cases (aside from the nullable cases above),
// a proto3 scalar field is populated if it contains a non-zero value, and
// a repeated field is populated if it is non-empty.
Has(FieldDescriptor) bool
// Clear clears the field such that a subsequent Has call reports false.
//
// Clearing an extension field clears both the extension type and value
// associated with the given field number.
//
// Clear is a mutating operation and unsafe for concurrent use.
Clear(FieldDescriptor)
// Get retrieves the value for a field.
//
// For unpopulated scalars, it returns the default value, where
// the default value of a bytes scalar is guaranteed to be a copy.
// For unpopulated composite types, it returns an empty, read-only view
// of the value; to obtain a mutable reference, use Mutable.
Get(FieldDescriptor) Value
// Set stores the value for a field.
//
// For a field belonging to a oneof, it implicitly clears any other field
// that may be currently set within the same oneof.
// For extension fields, it implicitly stores the provided ExtensionType.
// When setting a composite type, it is unspecified whether the stored value
// aliases the source's memory in any way. If the composite value is an
// empty, read-only value, then it panics.
//
// Set is a mutating operation and unsafe for concurrent use.
Set(FieldDescriptor, Value)
// Mutable returns a mutable reference to a composite type.
//
// If the field is unpopulated, it may allocate a composite value.
// For a field belonging to a oneof, it implicitly clears any other field
// that may be currently set within the same oneof.
// For extension fields, it implicitly stores the provided ExtensionType
// if not already stored.
// It panics if the field does not contain a composite type.
//
// Mutable is a mutating operation and unsafe for concurrent use.
Mutable(FieldDescriptor) Value
// NewField returns a new value that is assignable to the field
// for the given descriptor. For scalars, this returns the default value.
// For lists, maps, and messages, this returns a new, empty, mutable value.
NewField(FieldDescriptor) Value
// WhichOneof reports which field within the oneof is populated,
// returning nil if none are populated.
// It panics if the oneof descriptor does not belong to this message.
WhichOneof(OneofDescriptor) FieldDescriptor
// GetUnknown retrieves the entire list of unknown fields.
// The caller may only mutate the contents of the RawFields
// if the mutated bytes are stored back into the message with SetUnknown.
GetUnknown() RawFields
// SetUnknown stores an entire list of unknown fields.
// The raw fields must be syntactically valid according to the wire format.
// An implementation may panic if this is not the case.
// Once stored, the caller must not mutate the content of the RawFields.
// An empty RawFields may be passed to clear the fields.
//
// SetUnknown is a mutating operation and unsafe for concurrent use.
SetUnknown(RawFields)
// IsValid reports whether the message is valid.
//
// An invalid message is an empty, read-only value.
//
// An invalid message often corresponds to a nil pointer of the concrete
// message type, but the details are implementation dependent.
// Validity is not part of the protobuf data model, and may not
// be preserved in marshaling or other operations.
IsValid() bool
// ProtoMethods returns optional fast-path implementions of various operations.
// This method may return nil.
//
// The returned methods type is identical to
// "google.golang.org/protobuf/runtime/protoiface".Methods.
// Consult the protoiface package documentation for details.
ProtoMethods() *methods
}
// RawFields is the raw bytes for an ordered sequence of fields.
// Each field contains both the tag (representing field number and wire type),
// and also the wire data itself.
type RawFields []byte
// IsValid reports whether b is syntactically correct wire format.
func (b RawFields) IsValid() bool {
for len(b) > 0 {
_, _, n := protowire.ConsumeField(b)
if n < 0 {
return false
}
b = b[n:]
}
return true
}
// List is a zero-indexed, ordered list.
// The element Value type is determined by FieldDescriptor.Kind.
// Providing a Value that is invalid or of an incorrect type panics.
type List interface {
// Len reports the number of entries in the List.
// Get, Set, and Truncate panic with out of bound indexes.
Len() int
// Get retrieves the value at the given index.
// It never returns an invalid value.
Get(int) Value
// Set stores a value for the given index.
// When setting a composite type, it is unspecified whether the set
// value aliases the source's memory in any way.
//
// Set is a mutating operation and unsafe for concurrent use.
Set(int, Value)
// Append appends the provided value to the end of the list.
// When appending a composite type, it is unspecified whether the appended
// value aliases the source's memory in any way.
//
// Append is a mutating operation and unsafe for concurrent use.
Append(Value)
// AppendMutable appends a new, empty, mutable message value to the end
// of the list and returns it.
// It panics if the list does not contain a message type.
AppendMutable() Value
// Truncate truncates the list to a smaller length.
//
// Truncate is a mutating operation and unsafe for concurrent use.
Truncate(int)
// NewElement returns a new value for a list element.
// For enums, this returns the first enum value.
// For other scalars, this returns the zero value.
// For messages, this returns a new, empty, mutable value.
NewElement() Value
// IsValid reports whether the list is valid.
//
// An invalid list is an empty, read-only value.
//
// Validity is not part of the protobuf data model, and may not
// be preserved in marshaling or other operations.
IsValid() bool
}
// Map is an unordered, associative map.
// The entry MapKey type is determined by FieldDescriptor.MapKey.Kind.
// The entry Value type is determined by FieldDescriptor.MapValue.Kind.
// Providing a MapKey or Value that is invalid or of an incorrect type panics.
type Map interface {
// Len reports the number of elements in the map.
Len() int
// Range iterates over every map entry in an undefined order,
// calling f for each key and value encountered.
// Range calls f Len times unless f returns false, which stops iteration.
// While iterating, mutating operations may only be performed
// on the current map key.
Range(f func(MapKey, Value) bool)
// Has reports whether an entry with the given key is in the map.
Has(MapKey) bool
// Clear clears the entry associated with they given key.
// The operation does nothing if there is no entry associated with the key.
//
// Clear is a mutating operation and unsafe for concurrent use.
Clear(MapKey)
// Get retrieves the value for an entry with the given key.
// It returns an invalid value for non-existent entries.
Get(MapKey) Value
// Set stores the value for an entry with the given key.
// It panics when given a key or value that is invalid or the wrong type.
// When setting a composite type, it is unspecified whether the set
// value aliases the source's memory in any way.
//
// Set is a mutating operation and unsafe for concurrent use.
Set(MapKey, Value)
// Mutable retrieves a mutable reference to the entry for the given key.
// If no entry exists for the key, it creates a new, empty, mutable value
// and stores it as the entry for the key.
// It panics if the map value is not a message.
Mutable(MapKey) Value
// NewValue returns a new value assignable as a map value.
// For enums, this returns the first enum value.
// For other scalars, this returns the zero value.
// For messages, this returns a new, empty, mutable value.
NewValue() Value
// IsValid reports whether the map is valid.
//
// An invalid map is an empty, read-only value.
//
// An invalid message often corresponds to a nil Go map value,
// but the details are implementation dependent.
// Validity is not part of the protobuf data model, and may not
// be preserved in marshaling or other operations.
IsValid() bool
}

View file

@ -0,0 +1,59 @@
// Copyright 2018 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
// +build purego appengine
package protoreflect
import "google.golang.org/protobuf/internal/pragma"
type valueType int
const (
nilType valueType = iota
boolType
int32Type
int64Type
uint32Type
uint64Type
float32Type
float64Type
stringType
bytesType
enumType
ifaceType
)
// value is a union where only one type can be represented at a time.
// This uses a distinct field for each type. This is type safe in Go, but
// occupies more memory than necessary (72B).
type value struct {
pragma.DoNotCompare // 0B
typ valueType // 8B
num uint64 // 8B
str string // 16B
bin []byte // 24B
iface interface{} // 16B
}
func valueOfString(v string) Value {
return Value{typ: stringType, str: v}
}
func valueOfBytes(v []byte) Value {
return Value{typ: bytesType, bin: v}
}
func valueOfIface(v interface{}) Value {
return Value{typ: ifaceType, iface: v}
}
func (v Value) getString() string {
return v.str
}
func (v Value) getBytes() []byte {
return v.bin
}
func (v Value) getIface() interface{} {
return v.iface
}

View file

@ -0,0 +1,411 @@
// Copyright 2018 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
package protoreflect
import (
"fmt"
"math"
)
// Value is a union where only one Go type may be set at a time.
// The Value is used to represent all possible values a field may take.
// The following shows which Go type is used to represent each proto Kind:
//
// ╔════════════╤═════════════════════════════════════╗
// ║ Go type │ Protobuf kind ║
// ╠════════════╪═════════════════════════════════════╣
// ║ bool │ BoolKind ║
// ║ int32 │ Int32Kind, Sint32Kind, Sfixed32Kind ║
// ║ int64 │ Int64Kind, Sint64Kind, Sfixed64Kind ║
// ║ uint32 │ Uint32Kind, Fixed32Kind ║
// ║ uint64 │ Uint64Kind, Fixed64Kind ║
// ║ float32 │ FloatKind ║
// ║ float64 │ DoubleKind ║
// ║ string │ StringKind ║
// ║ []byte │ BytesKind ║
// ║ EnumNumber │ EnumKind ║
// ║ Message │ MessageKind, GroupKind ║
// ╚════════════╧═════════════════════════════════════╝
//
// Multiple protobuf Kinds may be represented by a single Go type if the type
// can losslessly represent the information for the proto kind. For example,
// Int64Kind, Sint64Kind, and Sfixed64Kind are all represented by int64,
// but use different integer encoding methods.
//
// The List or Map types are used if the field cardinality is repeated.
// A field is a List if FieldDescriptor.IsList reports true.
// A field is a Map if FieldDescriptor.IsMap reports true.
//
// Converting to/from a Value and a concrete Go value panics on type mismatch.
// For example, ValueOf("hello").Int() panics because this attempts to
// retrieve an int64 from a string.
type Value value
// The protoreflect API uses a custom Value union type instead of interface{}
// to keep the future open for performance optimizations. Using an interface{}
// always incurs an allocation for primitives (e.g., int64) since it needs to
// be boxed on the heap (as interfaces can only contain pointers natively).
// Instead, we represent the Value union as a flat struct that internally keeps
// track of which type is set. Using unsafe, the Value union can be reduced
// down to 24B, which is identical in size to a slice.
//
// The latest compiler (Go1.11) currently suffers from some limitations:
// • With inlining, the compiler should be able to statically prove that
// only one of these switch cases are taken and inline one specific case.
// See https://golang.org/issue/22310.
// ValueOf returns a Value initialized with the concrete value stored in v.
// This panics if the type does not match one of the allowed types in the
// Value union.
func ValueOf(v interface{}) Value {
switch v := v.(type) {
case nil:
return Value{}
case bool:
return ValueOfBool(v)
case int32:
return ValueOfInt32(v)
case int64:
return ValueOfInt64(v)
case uint32:
return ValueOfUint32(v)
case uint64:
return ValueOfUint64(v)
case float32:
return ValueOfFloat32(v)
case float64:
return ValueOfFloat64(v)
case string:
return ValueOfString(v)
case []byte:
return ValueOfBytes(v)
case EnumNumber:
return ValueOfEnum(v)
case Message, List, Map:
return valueOfIface(v)
case ProtoMessage:
panic(fmt.Sprintf("invalid proto.Message(%T) type, expected a protoreflect.Message type", v))
default:
panic(fmt.Sprintf("invalid type: %T", v))
}
}
// ValueOfBool returns a new boolean value.
func ValueOfBool(v bool) Value {
if v {
return Value{typ: boolType, num: 1}
} else {
return Value{typ: boolType, num: 0}
}
}
// ValueOfInt32 returns a new int32 value.
func ValueOfInt32(v int32) Value {
return Value{typ: int32Type, num: uint64(v)}
}
// ValueOfInt64 returns a new int64 value.
func ValueOfInt64(v int64) Value {
return Value{typ: int64Type, num: uint64(v)}
}
// ValueOfUint32 returns a new uint32 value.
func ValueOfUint32(v uint32) Value {
return Value{typ: uint32Type, num: uint64(v)}
}
// ValueOfUint64 returns a new uint64 value.
func ValueOfUint64(v uint64) Value {
return Value{typ: uint64Type, num: v}
}
// ValueOfFloat32 returns a new float32 value.
func ValueOfFloat32(v float32) Value {
return Value{typ: float32Type, num: uint64(math.Float64bits(float64(v)))}
}
// ValueOfFloat64 returns a new float64 value.
func ValueOfFloat64(v float64) Value {
return Value{typ: float64Type, num: uint64(math.Float64bits(float64(v)))}
}
// ValueOfString returns a new string value.
func ValueOfString(v string) Value {
return valueOfString(v)
}
// ValueOfBytes returns a new bytes value.
func ValueOfBytes(v []byte) Value {
return valueOfBytes(v[:len(v):len(v)])
}
// ValueOfEnum returns a new enum value.
func ValueOfEnum(v EnumNumber) Value {
return Value{typ: enumType, num: uint64(v)}
}
// ValueOfMessage returns a new Message value.
func ValueOfMessage(v Message) Value {
return valueOfIface(v)
}
// ValueOfList returns a new List value.
func ValueOfList(v List) Value {
return valueOfIface(v)
}
// ValueOfMap returns a new Map value.
func ValueOfMap(v Map) Value {
return valueOfIface(v)
}
// IsValid reports whether v is populated with a value.
func (v Value) IsValid() bool {
return v.typ != nilType
}
// Interface returns v as an interface{}.
//
// Invariant: v == ValueOf(v).Interface()
func (v Value) Interface() interface{} {
switch v.typ {
case nilType:
return nil
case boolType:
return v.Bool()
case int32Type:
return int32(v.Int())
case int64Type:
return int64(v.Int())
case uint32Type:
return uint32(v.Uint())
case uint64Type:
return uint64(v.Uint())
case float32Type:
return float32(v.Float())
case float64Type:
return float64(v.Float())
case stringType:
return v.String()
case bytesType:
return v.Bytes()
case enumType:
return v.Enum()
default:
return v.getIface()
}
}
func (v Value) typeName() string {
switch v.typ {
case nilType:
return "nil"
case boolType:
return "bool"
case int32Type:
return "int32"
case int64Type:
return "int64"
case uint32Type:
return "uint32"
case uint64Type:
return "uint64"
case float32Type:
return "float32"
case float64Type:
return "float64"
case stringType:
return "string"
case bytesType:
return "bytes"
case enumType:
return "enum"
default:
switch v := v.getIface().(type) {
case Message:
return "message"
case List:
return "list"
case Map:
return "map"
default:
return fmt.Sprintf("<unknown: %T>", v)
}
}
}
func (v Value) panicMessage(what string) string {
return fmt.Sprintf("type mismatch: cannot convert %v to %s", v.typeName(), what)
}
// Bool returns v as a bool and panics if the type is not a bool.
func (v Value) Bool() bool {
switch v.typ {
case boolType:
return v.num > 0
default:
panic(v.panicMessage("bool"))
}
}
// Int returns v as a int64 and panics if the type is not a int32 or int64.
func (v Value) Int() int64 {
switch v.typ {
case int32Type, int64Type:
return int64(v.num)
default:
panic(v.panicMessage("int"))
}
}
// Uint returns v as a uint64 and panics if the type is not a uint32 or uint64.
func (v Value) Uint() uint64 {
switch v.typ {
case uint32Type, uint64Type:
return uint64(v.num)
default:
panic(v.panicMessage("uint"))
}
}
// Float returns v as a float64 and panics if the type is not a float32 or float64.
func (v Value) Float() float64 {
switch v.typ {
case float32Type, float64Type:
return math.Float64frombits(uint64(v.num))
default:
panic(v.panicMessage("float"))
}
}
// String returns v as a string. Since this method implements fmt.Stringer,
// this returns the formatted string value for any non-string type.
func (v Value) String() string {
switch v.typ {
case stringType:
return v.getString()
default:
return fmt.Sprint(v.Interface())
}
}
// Bytes returns v as a []byte and panics if the type is not a []byte.
func (v Value) Bytes() []byte {
switch v.typ {
case bytesType:
return v.getBytes()
default:
panic(v.panicMessage("bytes"))
}
}
// Enum returns v as a EnumNumber and panics if the type is not a EnumNumber.
func (v Value) Enum() EnumNumber {
switch v.typ {
case enumType:
return EnumNumber(v.num)
default:
panic(v.panicMessage("enum"))
}
}
// Message returns v as a Message and panics if the type is not a Message.
func (v Value) Message() Message {
switch vi := v.getIface().(type) {
case Message:
return vi
default:
panic(v.panicMessage("message"))
}
}
// List returns v as a List and panics if the type is not a List.
func (v Value) List() List {
switch vi := v.getIface().(type) {
case List:
return vi
default:
panic(v.panicMessage("list"))
}
}
// Map returns v as a Map and panics if the type is not a Map.
func (v Value) Map() Map {
switch vi := v.getIface().(type) {
case Map:
return vi
default:
panic(v.panicMessage("map"))
}
}
// MapKey returns v as a MapKey and panics for invalid MapKey types.
func (v Value) MapKey() MapKey {
switch v.typ {
case boolType, int32Type, int64Type, uint32Type, uint64Type, stringType:
return MapKey(v)
default:
panic(v.panicMessage("map key"))
}
}
// MapKey is used to index maps, where the Go type of the MapKey must match
// the specified key Kind (see MessageDescriptor.IsMapEntry).
// The following shows what Go type is used to represent each proto Kind:
//
// ╔═════════╤═════════════════════════════════════╗
// ║ Go type │ Protobuf kind ║
// ╠═════════╪═════════════════════════════════════╣
// ║ bool │ BoolKind ║
// ║ int32 │ Int32Kind, Sint32Kind, Sfixed32Kind ║
// ║ int64 │ Int64Kind, Sint64Kind, Sfixed64Kind ║
// ║ uint32 │ Uint32Kind, Fixed32Kind ║
// ║ uint64 │ Uint64Kind, Fixed64Kind ║
// ║ string │ StringKind ║
// ╚═════════╧═════════════════════════════════════╝
//
// A MapKey is constructed and accessed through a Value:
// k := ValueOf("hash").MapKey() // convert string to MapKey
// s := k.String() // convert MapKey to string
//
// The MapKey is a strict subset of valid types used in Value;
// converting a Value to a MapKey with an invalid type panics.
type MapKey value
// IsValid reports whether k is populated with a value.
func (k MapKey) IsValid() bool {
return Value(k).IsValid()
}
// Interface returns k as an interface{}.
func (k MapKey) Interface() interface{} {
return Value(k).Interface()
}
// Bool returns k as a bool and panics if the type is not a bool.
func (k MapKey) Bool() bool {
return Value(k).Bool()
}
// Int returns k as a int64 and panics if the type is not a int32 or int64.
func (k MapKey) Int() int64 {
return Value(k).Int()
}
// Uint returns k as a uint64 and panics if the type is not a uint32 or uint64.
func (k MapKey) Uint() uint64 {
return Value(k).Uint()
}
// String returns k as a string. Since this method implements fmt.Stringer,
// this returns the formatted string value for any non-string type.
func (k MapKey) String() string {
return Value(k).String()
}
// Value returns k as a Value.
func (k MapKey) Value() Value {
return Value(k)
}

View file

@ -0,0 +1,98 @@
// Copyright 2018 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
// +build !purego,!appengine
package protoreflect
import (
"unsafe"
"google.golang.org/protobuf/internal/pragma"
)
type (
stringHeader struct {
Data unsafe.Pointer
Len int
}
sliceHeader struct {
Data unsafe.Pointer
Len int
Cap int
}
ifaceHeader struct {
Type unsafe.Pointer
Data unsafe.Pointer
}
)
var (
nilType = typeOf(nil)
boolType = typeOf(*new(bool))
int32Type = typeOf(*new(int32))
int64Type = typeOf(*new(int64))
uint32Type = typeOf(*new(uint32))
uint64Type = typeOf(*new(uint64))
float32Type = typeOf(*new(float32))
float64Type = typeOf(*new(float64))
stringType = typeOf(*new(string))
bytesType = typeOf(*new([]byte))
enumType = typeOf(*new(EnumNumber))
)
// typeOf returns a pointer to the Go type information.
// The pointer is comparable and equal if and only if the types are identical.
func typeOf(t interface{}) unsafe.Pointer {
return (*ifaceHeader)(unsafe.Pointer(&t)).Type
}
// value is a union where only one type can be represented at a time.
// The struct is 24B large on 64-bit systems and requires the minimum storage
// necessary to represent each possible type.
//
// The Go GC needs to be able to scan variables containing pointers.
// As such, pointers and non-pointers cannot be intermixed.
type value struct {
pragma.DoNotCompare // 0B
// typ stores the type of the value as a pointer to the Go type.
typ unsafe.Pointer // 8B
// ptr stores the data pointer for a String, Bytes, or interface value.
ptr unsafe.Pointer // 8B
// num stores a Bool, Int32, Int64, Uint32, Uint64, Float32, Float64, or
// Enum value as a raw uint64.
//
// It is also used to store the length of a String or Bytes value;
// the capacity is ignored.
num uint64 // 8B
}
func valueOfString(v string) Value {
p := (*stringHeader)(unsafe.Pointer(&v))
return Value{typ: stringType, ptr: p.Data, num: uint64(len(v))}
}
func valueOfBytes(v []byte) Value {
p := (*sliceHeader)(unsafe.Pointer(&v))
return Value{typ: bytesType, ptr: p.Data, num: uint64(len(v))}
}
func valueOfIface(v interface{}) Value {
p := (*ifaceHeader)(unsafe.Pointer(&v))
return Value{typ: p.Type, ptr: p.Data}
}
func (v Value) getString() (x string) {
*(*stringHeader)(unsafe.Pointer(&x)) = stringHeader{Data: v.ptr, Len: int(v.num)}
return x
}
func (v Value) getBytes() (x []byte) {
*(*sliceHeader)(unsafe.Pointer(&x)) = sliceHeader{Data: v.ptr, Len: int(v.num), Cap: int(v.num)}
return x
}
func (v Value) getIface() (x interface{}) {
*(*ifaceHeader)(unsafe.Pointer(&x)) = ifaceHeader{Type: v.typ, Data: v.ptr}
return x
}